Proses Koneksi Matematis Siswa Impulsif dan Reflektif dalam Menyelesaiakan Masalah Aljabar Berdasarkan Taksonomi SOLO

  • Sahidi Sahidi Universitas Pendidikan Muhammadiyah Sorong
Keywords: Koneksi Matematis, Gaya Kognitif, Pemecahan Masalah, Aljabar, Taksonomi SOLO

Abstract

Tujuan Penelitian ini adalah untuk mendeskripsikan proses koneksi matematis siswa yang memiliki gaya kognitif impulsive dan siswa reflektif dalam menyelesaikan masalah aljabar berdasarkan taksonomi SOLO. Penelitian ini merupakan jenis penelitian deskriptif. Penentuan subjek penelitian dilakukan dengan memberikan tes kognitif dengan menggunkan instrumen Maching Familiar Figure Test (MFFT). Hasil penelitian ini menunjukkan bahwa dalam menyelesaikan maslalah aljabar siswa impulsif hanya mampu mencapai level multistructural, pada tahap ini siswa impulsif mempunyai kemampuan mengkonstruksi beberapa ide-ide koneksi matematis yang televan tetapi tidak bisa menghubungkan ide-ide yang tedapat pada masalah sehingga siswa impulsif kesulitan dalam menyelesaikan soal. Pada tahap reflektif memiliki kemampuan mengkonstruk semua ide-ide koneksi matematis yang relevan dan bisa menghubungkan ide-ide tersebut dengan koneksi matematis yang lain dalam hal ini mampu menghubungkan antara konsep matematika dengan kehidupan sehari-hari, konsep aljabar dengan konsep pemfaktoran aljabar, konsep aljabar dengan konsep bilangan, konsep aljabar dengan konsep geometri bangun datar serta dapat menggeneralisasikan dan mengaplikasikan serta dapat mentransfer ide-ide koneksi matematis secara menyeluruh sehingga dapat menemukan simpulan yang relevan. Akan tetapi siswa yang memiliki gaya kognitif relflektif memiliki tingkat ketelitian yang tinggi, sehingga membutuhkan waktu yang relatif lama dalam menyelesaikan masalah

Downloads

Download data is not yet available.

References

Aini, K. N., Purwanto. & Sadijah,C. (2016). Proses Koneksi Matematika Siswa berkemampuan Tinggi dan Rendah dalam Memecahkan Masalah Bangun Datar. Jurnal Pendidikan: Teori, Penelitian Dan Pengembangan, 1(3), 377–388.
Arjudin, Sutawidjaja, A., Irawan, E. B., & Sadijah, C. (2016). Characterization of Mathematical Connection Errors in Derivative Problem Solving. IOSR Journal of Research & Method in Education (IOSR-JRME), 6(5), 7–12.
Biggs, John B & Catherine, T. (2011). Biggs’ structure of the observed learning outcome (SOLO) taxonomy. Teaching and Educational Development Institute University of Queesnland, 1–5.
Biggs, J., & Collis, K. F. (1982). Evaluating the Quality of Learning: The SOLO Taxonomy. A Handbook for Teaching and Learning in Higher Education: Enhancing Academic Practice.
Bilotskii, N. N., & Subbotin, I. Y. (2009). Inter-subject Connections in Teaching Mathematics : Isometries of a Number Line and Some Fundamental Properties of Functions. Journal of Research in Innovative Teaching, 2(1), 117–126.
Coxford, A. . (1995). The Case for Connection", in Connecting Mathematics Across the Curriculum. In A. F. House, P. A. & Coxford (Ed.) (pp. 3–12). Virginia: NCTM.
Creswell, J. W. (2009). Research Design Quantitative, Qualitative, and Mixed Methods Approaches. London: SAGE Publications.
Ekawati, R. (2013). Studi Respon Siswa Dalam Menyelesaikan Masalah Soal Pemecahan Masalah Matematika berdasarkan Taksonomi SOLO. Unnes Journal of Mathematics Education Research. Unnes Journal of Mathematics Education Research, 2(2).
Eli, J. a, Lee, C. W., & Mohr-schroeder, M. J. (2013). Mathematical Connections and Their Relationship to Mathematics Knowledge for Teaching Geometry. School Science and Mathematics, 113(3), 120–134.
Fauziah, E. W., & Kristiana, A. I. (2015). Analisis Tingkat Berpikir Kreatif Dalam Pengajuan Masalah Matematika Pokok Bahasan Bangun Ruang Sisi Datar Berdasarkan Gaya Kognitif Reflektif-Impulsif Siswa Kelas VIII-F SMP Negeri 12 Jember ( Analysis Level of Creative Thinking in Mathematics Problem Po. Jurnal Edukasi UNEJ, 2(2), 1–6.
Fox, J. (2006). A Justification for Mathematical Modelling Experience in the Preparatory Classroom. Proceedings of the 29th Annual Conference of the Mathematics Education Research Group of Australasia, 2006, 221–228.
Gary L. Musser, Blake E. Peterson, W. F. B. (2004). Mathematics for Elementary Teacher: A Contemporary Approach. America: John Willey & Sons.
Hamdani. (2009). Taksonomi Bloom dan SOLO untuk Menentukan Kualitas Respon Siswa Terhadap Masalah Matematika. Surabaya: IAIN Sunan Ampel.
Haylock, D. and Thangata, F. (2007). Key Concepts in Teaching Primary Mathematics. London: SAGE.
Hiebert, James; Carpenter, T. P., & Grouws, D. A. (1992). Learning and Teaching with Understanding. In D. Grouws (Ed),Handbook of Research on Mathematics Teaching and Learning. New York: MacMillan.
Hosnan, M. (2014). Pendekatan Saintifik dan Kontestual dalam Pembelajaran. Jakarta: Ghalia Indah.
Hudojo, H. (2005). Pengembangan Kurikulum dan Pembelajaran Matematika. Malang: Universitas Negeri Malang.
In’am, A. (2016). Menguak Penyelesaian Masalah Matematika. Malang: Aditya Media.
Jimoyiannis, A. (2011). Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement. Themes in Science and Technology Education, 4(2), 53–74.
John. W Santrock. (2011). Educational Psychology. New York: McGraw-Hill.
Johnson, B., & Christensen, L. (2008). Educational Research: Quantitative, Qualitative, and Mixed Approaches. The Journal of Educational Research (Vol. 102).
Kagan, J. (1966). Reflection--impulsivity: the generality and dynamics of conceptual tempo. Journal of Abnormal Psychology, 71(1), 17–24.
Karatas, I., & Baki, A. (2013). The effect of learning environments based on problem solving on students’ achievements of problem solving. International Electronic Journal of Elementary Education, 5(3), 249–267.
Kartono, S. &. (2015). Analysis of mathematical connection ability in linear equation with one variable based on connectivity theory. International Jurnal of Education and Research, 3(4), 259–270.
Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting mathematical creativity to mathematical ability. ZDM - International Journal on Mathematics Education, 45(2), 167–181.
Ketterlin-Geller, L. R., Chard, D. J., & Fien, H. (2008). Making connections in mathematics: Conceptual mathematics intervention for low-performing students. Remedial and Special Education, 29(1), 33–45.
Kondratieva, M. F., & Radu, O. G. (2009). Fostering Connections Between the Verbal , Algebraic , and Geometric Representations of Basic Planar Curves for Student ’ S Success in the Study of. The Mathematics Enthusiast, 6(1 & 2), 213–238.
Kusmanto, H., & Marliyana, I. (2014). Pengaruh Pemahaman Matematika Terhadap Kemampuan Koneksi Matematika Siswa Kelas VII Semester Genap SMP Negeri 2 Kasokandel Kabupaten Majalengka. Eduma, 3(2), 61–75.
Lapp, D., Nyman, M., & Berry, J. S. (2010). Student connections of linear algebra concepts: an analysis of concept maps. International Journal of Mathematical Education in Science and Technology, 41(1), 1–18.
Lester, F. K. (2013). The Mathematics Enthusiast Thoughts About Research On Mathematical Problem-Solving Instruction Thoughts About Research On Mathematical Problem-Solving Instruction. The Mathematics Enthusiast, 10(10), 1551–34401.
Lian, L. H., & Yew, W. T. (2012). Assessing algebraic solving ability: A theoretical framework. International Education Studies, 5(6), 177–188.
Mahmood, A. (2014). Understanding of Elementary School Teachers of 3rd World Country about Levels of SOLO Taxonomy. Mediterranean Journal of Social Sciences, 5(23), 1135–1138.
Makar, K. (2007). “ Connection Levers ”: Developing Teachers ’ Expertise with Mathematical Inquiry. Mathematics: Essential Research, Essential Practice - Volume 2, 2, 483–492.
Miles, M., & Huberman, A. (1994). Qualitative Data Analysis: A Methods Sourcebook. Arizona State University: SAGE: Publictions.
Ministry of National Education [MoNE]. (2012). Secondary mathematics curriculum (Grades 9-12) [Ortaöğretim matematik (9, 10, 11 ve 12. sınıflar) dersi öğretim programı]. Ankara: MONE.
Moleong, L. (2013). Metodologi Penelitian Kualitatif. Bandung: Remaja Rosdakarya.
Mousley, J. (2004). An aspect of mathematical understanding: The notion of “connected knowing.” Proceedings of the 28th International Conference of the International Group for the Psychology of Mathematics Education, 3, 377–384.
Mulyasa, E. (2013). Pengembangan dan Implementasi Kurikulum. Bandung: Rosdakarya.
NCTM. (2000). Principles and Standards foe School Mathematics. USA: The National Council of Teachers of Mathematics, Inc.
Orrill, C. H., & Kittleson, J. M. (2014). Tracing professional development to practice: connection making and content knowledge in one teacher’s experience. Journal of Mathematics Teacher Education, 18(3), 273–297.
Ozgen, K. (2013). Self-Efficacy Beliefs In Mathematical Literacy And Connections Between Mathematics And Real World: The Case Of High School Students. Journal of International Education Research, 9(4), 305–316.
Polya, G. (1957). How to Solve It. New Jersey: Princeton University Press.
Puspita, A.Y.A., & Wijayanti, P. (2016). Profil Pemecahan Masalah Matematika Siswa Pada Materi Segiempat Ditinjau dari Gaya Kognitif Reflektif dan Impulsif. MATHEdunesa: Jurnal Ilmiah Pendidikan Matematika, 3(5), 18–26.
Rendya Logina Linto, Sri Elniati, dan Y. R. (2012). Kemampuan Koneksi Matematis dan Metode Pembelajaran Quantum Teaching dengan Peta Pikiran. Jurnal Pendidikan Matematika, 1(1), 83–87.
Retnasari, R., Maulana, M., & Julia, J. (2016). Pengaruh Pendekatan Kontekstual Terhadap Kemampuan Koneksi Matematis dan Motivasi Belajar Siswa Sekolah Dasar Kelas IV pada Materi Bilangan Bulat. Pena Ilmiah, 1(1), 391–400.
Sapti, M. (2013). Kemampuan Koneksi Matematis (TINJAUAN TERHADAP PENDEKATAN PEMBELAJARAN SAVI). Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Simuth, J., & Sarmany-Schuller, I. (2014). Cognitive Style Variable in E-learning. Procedia - Social and Behavioral Sciences, 116, 1464–1467.
Siswono. (2008). Model Pembelajaran Matematika Berbasai Pengajuan dan Pemecahan Masalah Untuk Meningkatkan Kemampuan Berpikir Kreatif. : Surabaya: Unesa University Press.
Sisworo, T. (2016). Proses Metacognisi Siswa dalam Pemecahan Masalah Aljabar Berdasarkan Takxonomi SOLO. Jurnal Pendidikan: Teori, Penelitian Dan Pengembangan, 1(11), 2118–2125.
Socas, M. M., & Hernández, J. (2013). Mathematical Problem Solving in Training Elementary Teachers from a Semiotic Logical Approach. The Mathematics Enthusiast, 10(1–2), 191–218.
Soemarmo, U., & Hendriana, H. (2014). Penilaian Pembelajaran Matematika. Bandung: Refika Aditama.
Stemhagen, K. (2008). Doin’ the Math: On Meaningful Mathematics-Ethics Connections. The Montana Mathematics Enthusiast, 5(1), 59–66.
Stylianides, A. J., & Stylianides, G. J. (2007). Learning mathematics with understanding: A critical consideration of the learning principle in the principles and standards for school mathematics. The Montana Mathematics Enthusiast, 4(1), 103–114.
Stylianou, D. (2013). An examination of connections in mathematical processes in students’ problem solving: Connections between representing and justifying. Journal of Education and Learning, 2(2), 23–35.
Sugiman. (2008). Koneksi Matematika dalam Pembelajaran Matematika di Sekolah Menegah Pertama. Pythagoras, 4(1), 56–67.
Susanti, E., Parta, I. N., & Chandra, D. (2013). Profil Berpikir Siswa dalam Mengkonstruksi Ide-Ide Koneksi Matematis Berdasarkan Taksonomi SOLO. KNPM V, Himpunan Matematika Indonesia, 252–263.
Suyono. (2008). Matematika Sekolah Dasar dan Menengah. Jakarta: Erlangga.
Tchoshanov, M. A. (2011). Relationship between teacher knowledge of concepts and connections, teaching practice, and student achievement in middle grades mathematics. Educational Studies in Mathematics, 76(2), 141–164.
Warli. (2010). Profil Kreativitas Siswa yang Bergaya Kognitif Reflektif dan Siswa yang Bergaya Kognitif Impulsif dan Reflektif dalam Memecahkan Masalah Geometri. Surabaya: UNESA: Tesis tidak diterbitkan.
Warli. (2013). Kreativitas Siswa SMP yang Bergaya Kognitif Refl ektif atau Impulsif dalam Memecahkan Masalah Geometri. Jurnal Pendidikan dan Pembelajaran, 20(2), 190–201.
Widadah, S. (2013). Profil Metakognisi Siswa dalam Menyelesaikan Soal Sistem Persamaan Linier Dua Variabel Berdasarkan Gaya Kognitif. Jurnal Pendidikan Matematika STKIP PGRI Sidoarjo, 1(1), 13–24.
Wilburne, J. M., & Napoli, M. (2008). Connecting mathematics and literature: An analysis of pre-service elementary school teachers’ changing beliefs and knowledge. IUMPST: The Journal. Burns, 2(September), 1–10.
Wolfoolk, A. H. (2005). Educational Psychology. London: Ally and Bacon: Pearson 2012-01-15.
Yantz, J. (2013). Connected Representations of Knowledge: Do Undergraduate Students Relate Algebraic Rational Expressions to Rational Numbers? Mid-Western Educational Researcher, 25(4), 47–61.
Yilmaz, Z., & Topal, Z. O. (2014). Connecting Mathematical Reasoning and Language Arts Skills: The Case of Common Core State Standards. Procedia - Social and Behavioral Sciences, 116, 3716–3721.
Published
2023-01-17